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Erosion and the mechanics of shallow foreland thrusts 

JAMES H. WILLEMIN* 

Depar tment  of Earth and Planetary Sciences, Massachuset ts  Institute of  Technology,  Cambridge,  
M assach usetts 02139, U.S .A.  

(Received 5 July 1982; accepted in revised form 10 October 1983) 

A b s t r a c t - - A  simple model for the effects of  erosion on the geometry and mechanics of  shallow foreland thrusts  
allows prediction of max imum stable length of the thrust  toe, location of initial failure within the toe, if total thrust  
displacement  exceeds the max imum stable length, and est imates of  average pore fluid pressures  along the fault 
during thrust  advance. For 'typical" rates of erosion and thrust  advance,  the max imum stable length of the toe may 
be very large (over 5(I km) for relatively low values of  fluid overpressure.  Application of the theoretical results to 
the Keys tone -Muddy  Mountain  thrust  of southern  Nevada predicts: max imum stable length, location and degree 
of imbrication in agreement  with observation;  relatively low pore fluid pressures along the fault (;t between 0.5 
and 0.6), and a rate of thrust  advance between 4 and 8 km Ma -~ . 

INTRODUCTION THEORETICAL DEVELOPMENT 

EROSlOr~ is an important factor in the mechanics of 
shallow foreland thrusts: by modifying the thickness of 
the advancing thrust sheet, erosional denudation con- 
trols the maximum length of the overriding toe. Thick- 
ness of the thrust sheet controls the overburden stress, 
hence the basal resistance and maximum stable length 
(e.g. Hubbert & Rubey 1959, Johnson 1981). This work 
is a quantitative evaluation of the importance of erosion 
in the mechanics of shallow foreland thrusts. 

Earlier work on the significance of erosion in thrusting 
includes analyses by Raleigh & Griggs (1963) and 
Johnson (1981). Raleigh & Griggs concluded that in 
order for thrust advance to occur, erosion must com- 
pletely remove the advancing toe before significant tec- 
tonic overlap develops. Johnson analysed the Keystone- 
Muddy Mountain thrust of southern Nevada and con- 
cluded that a steady-state geometry was attained when 
the toe reached a length of 25 km. In this paper I present 
first general relationships between the rate of erosion, 
rate of thrust advance and the profile of an advancing 
thrust sheet; I then apply these relationships in a 
mechanical analysis of the Keystone-Muddy Mountain 
thrust. 

The general theory developed here is particularly 
relevant to 'erosional thrusts': thrusts whose fault plane 
was so near the surface of the earth that erosional 
detritus derived from the advancing allochthon was 
incorporated into the footwall (Longwell 1949, Davis 
1973, Brock & Engelder 1977, Johnson 1981), although 
a modification of this theory may easily be made for any 
thrust plate bounded above by an erosional surface 
during thrust transport. Application of this mechanical 
development to the Keystone-Muddy Mountain system 
not only provides an estimate of the maximum stable 
length of the advancing thrust toe, but also provides an 
estimate of the stress field near the fault and an estimate 
of the rate of thrust advance. 
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The theory developed here is based on a simple 
abstraction of an erosional thrust (Fig. 1). I first present 
a method for estimating the cross-sectional profile of the 
advancing toe of the thrust sheet, then I analyse the 
stress field near the base and derive an expression for the 
mechanical stability (maximum stable length) for such a 
toe. 

Several major assumptions are central to the following 
development, including the form of the erosion law, the 
assumed absence of tectonic thickening and a simple 
frictional fault mechaiaism. In general, the rate of ero- 
sional denudation at a point is a function of slope, 
climate and bedrock lithology (e.g. Blatt et al. 1980). In 
his analysis of the Keystone thrust of southern Nevada, 
Johnson (1981) assumed a constant rate of denudation 
(1 mm a-l). However, studies .over a wide range of 
climatic and lithologic conditions suggest the rate of 
erosional denudation is proportional to local relief (i.e. 
slope) (Ahnert 1970, Ruxton & McDougall 1967). The 
effects of climate and lithology on erosion rate are 
contained in the constant k in this development: for 
application to a specific thrust sheet, climate and lithol- 
ogy determine the basic erosion rate, which varies with 
the changing relief of the advancing thrust toe. 

The assumption of no internal thickening is one of the 
defining axioms of this discussion. In this first-order 
treatment, there is no attempt to deal with the complica- 
tions resulting from dynamic thickening of the thrust 
sheet during advance. Future treatments may include a 
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Fig. 1. Schematic section of erosional thrust  model  showing coordinate 
system and concave-upward topographic profile. 
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thickening term, provided some constraints can be 
placed on the rate and location of profile change due to 
internal failure, but such complexities are beyond the 
scope of this simple analysis. 

Simple frictional sliding under the influence of pos- 
sibly elevated pore fluid pressures is perhaps the simplest 
model for a realistic fault mechanism, and is assumed 
here not only for the sake of simplicity .but also for ease 
of comparison with previous work (e.g. Hubber t  & 
Rubey 1959, Rubey & Hubber t  1959, Raleigh & Griggs 
1963, Johnson 1981, Price & Johnson 1982). Other  
mechanisms (e.g. flow within a ductile layer or stick-slip) 
require a straightforward modification of the mechanical 
discussion and may alter specific conclusions reached 
regarding pore fluid .pressures, stress levels, and so 
forth, but do not change the fundamental relationships 
between rate of erosion, rate of thrust advance, profile 
and overburden stress. 

GEOMETRY 

The topography developed on an advancing erosional 
thrust sheet is a result of two competing processes. 
Denudat ion removes material and reduces elevation, 
while tectonic processes such as folding and imbrication 
tend to thicken the thrust sheet and increase or maintain 
elevation. For simplicity, it is assumed that changes of 
shape due to tectonic processes do not occur in the toe of 
an advancing erosional thrust. Thus the primary process 
controlling the cross sectional profile is erosion. Assum- 
ing that the rate of denudation is proportional to the 
local relief (Ahnert  1970), I consider two simple cases: 
the first assumes a completely rigid crust and no isostatic 
subsidence; the second assumes complete isostatic com- 
pensation and zero flexural rigidity for the crust. 

Case 1: Rigid crust 

Let H0 be the original thickness of the exposed thrust 
sheet, h(x) the local thickness (relief), and x the distance 
away from the top of the ramp (Fig. 1). The rate of 
denudation is proportional to relief; thus, 

dh 
- -  = - k h ,  (1) 
dt 

where k is a constant with dimension T -1. The sign of k 
is negative because relief is reduced with time. The 
thickness h is therefore 

h = H0 exp [-kt], (2) 

where t is the time a specific point on the upper plate has 
been exposed to erosion. If r is the average rate of thrust 
advance, a point on the toe a distance x from the top of 
the ramp has been exposed to erosion for a time 

t = x/r. (3) 

Substituting for t in equation 2, the expression for the 
thickness of the thrust sheet as a function of distance 
away from the top of the ramp (x = 0) becomes 

h(x) = Ho exp [-(k/r)x]. (4) 

The ratio of erosion rate constant to rate of thrust 
advance (k/r) is here defined as the 'profile parameter '  
a; equation (4) becomes 

h(x) = Ho exp [ - a x ] .  (4a) 

Case 2: Complete compensation 

The second case assumes complete and instantaneous 
isostatic compensation for the tectonic load of the 
advancing, eroding thrust sheet, but neglects the effects 
of any debris wedge or foredeep deposits. Suppose 
complete isostatic compensation occurs instantane- 
ously, so that the advancing thrust sheet is always in 
isostatic equilibrium. The local relief h'(x) is now 
assumed to be that portion of the thrust sheet above the 
isostatic datum (e.g. sea level), and local relief is related 
to total thrust sheet thickness h(x) by 

where Pm is the density of the upper mantle and Ot is the 
density of the advancing thrust sheet. The original dif- 
ferential equation for the rate of denudation then 
becomes: 

dh 
- -  = - k h '  (6) 
dt 

= - k ( 1  - p~/pm)h, (6a) 

and the expression for the thickness of the thrust sheet at 
some distance x away from the top of the ramp becomes: 

h(x)= H0 exp { - (  k(i  - ; t / o m ) ) x }  

= H0 exp ( - a ( 1  - Pt/pm)x). (7) 

The effect of subsidence is to lessen the influence of 
erosion in reducing the thickness of the advancing thrust 
toe. That  is, complete isostatic compensation will reduce 
the profile parameter  a by a factor of O,/Pm. The signifi- 
cance of this potential reduction of a on the mechanical 
stability of the advancing thrust sheet will become 
apparent in the next section. 

MECHANICS 

By removing material from an advancing thrust sheet, 
erosion reduces the thickness and cross-sectional area of 
the thrust sheet. Reducing thickness reduces the vertical 
stress, thus reducing fault zone resistance according to 
Coulomb's law: 

r = ~o', + C. (8) 

where r is the shear strength of the fault, o-, is the normal 
stress across the fault, p. is the coefficient of friction and 
C is the cohesive strength of the fault. Reducing cross 
sectional area reduces the strength of the thrust sheet. 
hence the ability of the thrust sheet as a whole to 
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overcome the fault zone resistance. Thus, the overall 
effect of erosional denudation on thrust mechanics is the 
result of two contrasting principles: reduction of resist- 
ance and reduction of strength. 

The relative importance of these two contrary effects 
is determined primarily by the profile of the thrust sheet 
for a given lithoiogy and fault mechanism. In the follow- 
ing discussion, the thrust sheet is assumed to consist of 
rocks with uniform lithology obeying the Mohr -  
Coulomb failure criterion (Jaeger & Cook 1976). The 
fault mechanism is assumed to be simple sliding friction. 
Under  these assumptions calculation of maximum stable 
length of the thrust toe serves as a simple gauge of the 
relative importance of the two effects of erosion: a high 
maximum stable length suggests reduction of resistance 
is dominant,  while a low maximum stable length suggests 
reduction of strength is the most important effect of 
erosion. 

F a u l t  z o n e  r e s i s t a n c e  

For a subhorizontal fault with simple frictional sliding 
mechanism, the fault zone resistance at a point x is a 
function of fault zone depth and pore fluid pressure 
(Hubber t  & Rubey 1959) 

T = I ~ ( p g z ) ( l  - -  Af)  + C ,  (9) 

where ~-is the fault zone resistance,/x is the coefficient of  
friction, g is the acceleration of gravity, z is the depth of  
the fault, Af is the ratio of pore fluid pressure to vertical 
stress within the fault zone and C is the cohesive strength 
of the fault. For stable sliding, cohesive strength is 
assumed to vanish and the coefficient of friction is 
assumed to lie between 0.6 and 0.75 (Dieterich 1979). If 
the fault zone material is relatively impermeable,  lateral 
changes in A+ should be relatively small; therefore Af will 
be assumed constant. Thus, the fault zone resistance is a 
function of position on the eroding toe 

~" = ~pg(1 - A0h(x). (10) 

Following Hubber t  and Rubey (1959), the average hori- 
zontal stress cr~ at a point x required to overcome fault 
zone resistance is 

If cry(x)"  h ( x )  = r ( u )  d u ,  (11) 

where xt is the position of the leading edge of the 
advancing toe. Substituting for ~" and h(x) from eqns. 
4(a) and 9, the expression for o'~ becomes: 

o'S(x) =(Ho exp (-ax))- lp .pg(1 - Af)Ho f exp ( - a x )  dx 
= I . l ~ p g ( 1  - -  /~ , f ) (1 /Of) ( ]  - -  exp ( - a ( x t  - x))). (12) 

In the (hypothetical) absence of pore fluids within the 
body of the thrust sheet, the horizontal stress o" h at the 
base of the sheet, here taken as twice the average 
horizontal stress, is 

o" h = ( 2 t z p g / a ) ( 1  - Ae)(1 - exp ( - a ( x t  - x))),  (13a) 

the vertical stress at the base of the sheet is 

cry = p g H o  exp ( - a x ) ,  (13b) 

and the shear stress at the base is 

r = I z p g H o ( l  - Af) exp (-c~x). (13c) 

If pore fluids are present within the body of the thrust 
sheet, the effective vertical and horizontal stresses are 

cr~ = (1 - X b ) ( 2 l ~ p g / a ) ( 1  -- A+)(1 -- exp ( - - a ( x ~  -- x ) ) )  

(130) 

and 

< = (1 - A b ) p g H o  exp ( - a x ) ,  (13e) 

where A~ is the ratio of pore fluid pressure within the 
body of the thrust sheet to vertical stress. If the fault 
zone permeability differs greatly from that of the sur- 
rounding rock, Ab may be much different than Af. The 
ratio of horizontal to vertical effective stresses near the 
base of an advancing erosional thrust toe is obtained by 
dividing eqn. 13(d) by eqn. 13(e): 

~r h _ cr~ _ 2tz(1 - Af) exp (ax)(1 - exp ( - a ( x t  - x))). 
o'v or" all0 

(14) 

Thus, the ratio of horizontal to vertical stress varies with 
position along the thrust toe (Appendix).  Indeed, the 
Differentiating (14) with respect to x, the stress ratio 
crh/~ % attains a maximum at the point 

x = xt - (log~2)/a. (15) 

The maximum value of the stress ratio is: 

(O'h]Orv)ma x = (/.i,(1 - -  Af) /2o tHo)  exp (c~xt). (16) 

The state of stress on the fault plane is completely 
determined by ¢r h, Cry and z (Jaeger 1969). The principal 
stress inclination is defined by the angle 0 between cr~ and 
oh, given by (Jaeger 1969, p. 7) 

0 = 1/2 tan -1 (2~'/(¢rh -Crv)) (17a) 

and the principal stress magnitudes are given by 

¢rl = l/2(¢rh + O'v + (¢rh -- ¢rv)/COS (28)) (17b) 
~r 3 = 1/2(o- h + cr~ - (~r h - Crv)/COS (20)), (17c) 

where 0 is as above. 
Substituting for cr h, cr~ and ~- from equations (13), it 

follows that the principal stress inclination 0 and the 
ratio of principal stress magnitudes crl/o, 3 vary with 
position along the thrust toe (Appendix) .  Indeed, the 
principal stress ratio is greatest and the principal stresses 
most nearly parallel to cr h and Cry (8 smallest) at the point 
where o'h/o'~ is maximum 

x0 = xt - (loge 2)/a. (18) 

S t r e n g t h  

The preceding section developed a formalism for 
calculation of the stress field near the base of a hypothet- 
ical erosional thrust toe, assuming no internal thicken- 
ing. In this section, a set of relations is developed to 
predict the onset of imbrication within the advancing 
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thrust toe as a function of the length and thickness of the 
advancing thrust sheet, the profile parameter  a and the 
pore fluid pressure both within the body of the thrust 
sheet and within the fault zone. The resulting equations 
allow the prediction of the location of the primary 
imbrications within an advancing erosional thrust. 

Mechanical failure of a body (in this case imbrication 
of the erosional thrust sheet) occurs when the stresses 
within the body exceed the strength, specified by a 
failure criterion. Choice of a failure criterion for a thrust 
sheet depends on lithology, pre-existing structure or 
weakness, rate of deformation and the physical condi- 
tions of deformation (pressure, temperature,  etc.). For 
this study I assume that the toe of the advancing thrust 
sheet is pervasively fractured, with potential slip surfaces 
existing in all orientations, and that failure will occur 
when the shear stress on the most favorably oriented of 
these surfaces exceeds the static friction. 

For most rocks at confining pressures below 200 MPa, 
Byerlee (1978) found that static friction on a fracture 
could be described by a form of the Mohr--Coulomb 
failure criterion 

r = ~0- ,  - Be), (19) 

where r and 0-, are the shear and normal stresses on the 
fracture, Pf is the pore fluid pressure and s ¢ is the 
coefficient of static friction. Byerlee found that for most 
rocks ~: = 0.85, regardless of lithology (excepting certain 
clays). This relation can be re-cast in terms of the 
principal stresses 0-1 and o" 3 (Jaeger 1969, p. 76) 

0., _ (¢ + (~2 + 1),/2 _ 2~Pf  - C0)Rr3) (20) 
O. 3 (~2 + 1)v2 _ 

or, letting ~: = 0.85 and Co = 0, 

0",/0"3 = 4.7 - 3.67(Pfl0.3). (21) 

Failure of the thrust sheet will occur first where the 
ratio 0-1 /0 -3  is largest. It was stated above that 0-1/0.3 
attains a maximum and that the principal stress direc- 
tions are most nearly horizontal and vertical at the point 
Xo = xt - logo 2)/a. Approximating 0., by o'h and 0.3 by 0.v, 
the failure condition for the thrust sheet becomes: 

0.h/0.v = 4.7 - 3.67(Pro.v) (21a) 

or, from equation (16), 

(~(1 - & ) / 2 a H o )  exp (axt) = 4.7 - 3.67Ab. (22) 

The ratio Pflo'v is Ab, equivalent to the parameter  A 
defined by Hubber t  & Rubey (1959) for the region 
within the body of the thrust sheet and possibly distinct 
from he defined above. Solving for xt m~, the maximum 
stable length, the failure condition can be written; 

Xt max = ( l /a)log~ ((4.7 - 3.67Ab)2aH0/(/z(1 - At))). 
(23) 

Thus, when the distance between the leading edge and 
the top of the ramp reaches xt m~x an imbricate fault will 
form within the toe of the thrust sheet at a distance 
(log~ 2) /a  from the leading edge (Fig. 2). 

During the early stages of thrust advance, the distance 

(0) ~ -'x 

-I 

l_ _1 
I -  lo%2/~ -1 

Fig. 2. Structural history of an advancing erosional thrust toe: (a) Total 
displacement less than maximum stable length. The toe remains 
coherent without internal thickening. (b) Total displacement equals 
maximum stable length. The thrust toe becomes mechanically unstable 
with further displacement on the main thrust. (c) Total displacement 
greater than maximum stable length. An imbrication has formed at the 
point of greatest principal stress ratio and internal thickening becomes 

mechanically important. 

xt between the leading edge of the thrust toe and the top 
of the ramp will be small (xt < (loge 2)/a) ,  and this 
analysis will not hold. In this case, the maximum princi- 
pal stress ratio and minimum principal stress inclination 
will occur at the top of the ramp (x = 0). It is possible 
that the thrust sheet will become mechanically unstable 
during this early phase, while xt < loge 2/a.  Again 
assuming that 0., ~ o" h and 0- 3 ~ 0-v and that failure will 
occur according to equation (21), imbrication will occur 
at the top of the ramp (x = 0) if 

0-h/O-v = (2/x(1 -- Af)/aH0)(1 - exp ( - a x t ) )  
= 4.7 - 3.67Ab. (24) 

Solving for xt, imbrication at the top of the ramp will 
occur if 

(log~ 2) /a  > xt  
= - ( l / a ) l o g 2  (1 - (aHo/2tz (1  - A0)(4.7 - 3.67Ab)) 

o r  

1/2 > (aH0/2/z(1 - A0)(4.7 - 3.67Ab). (25) 

Thus, imbrication at the top of the ramp will occur if 
the toe is thin, friction high, erosion slow, or if excess 
pore fluid pressure weakens the thrust sheet (A, high). 

In this section the stress field near the base of an 
advancing erosional thrust toe has been determined as a 
function of basal friction tz, total toe length xt and 
'profile parameter '  a. From the expressions derived for 
the principal stresses, it was determined that the advanc- 
ing thrust sheet will first become mechanically unstable 
(begin internal thickening) at a point that may be some 
distance from both the leading edge and the top of the 
ramp. In the next sections, I first discuss these various 
expressions, then apply the formalism developed here to 



Erosion of foreland thrusts 429 

a classic example of a real erosional thrust: the 
Keys tone-Muddy Mountain thrust system of southern 
Nevada (Longwell 1949, Davis 1973, Burchfiel et al. 

1974, Wiilemin et al. 1981, Johnson 1981, Price & 
Johnson 1982). 

DISCUSSION 

Perhaps the single most important parameter  in this 
development is the 'profile parameter '  a. Defined as the 
ratio of erosion rate constant to the rate of thrust 
advance, a is a measure of the taper of the erosional 
wedge. Large values of a mean that the rate of erosion is 
relatively large, and that the geometry of the advancing 
thrust sheet is strongly altered by erosional denudation, 
while smaller values of a indicate that thrust advance is 
fast with respect to erosion and the profile of the thrust 
sheet is relatively little altered by erosion. The influence 
of this parameter  can be seen in the expression for the 
location of the maximum principal stress ratio (eqn 18): 

xl, = xt - (loge 2)/a .  

For large values of a (steep taper),  the maximum princi- 
pal stress ratio occurs near the leading edge of the toe, 
while for small values of a (gentle taper) the maximum 
principal stress ratio occurs closer to the back of the 
advancing toe. Thus, a controls the relative position of 
the first internal imbrication of the thrust wedge: a 
quickly eroding thrust sheet will fail near the leading 
edge, while a slowly eroding thrust toe will fail nearer the 
top of the ramp. 

This is also apparent in the expression for the 
maximum stable length, (eqn 23): 

Xt m a x  : ( l /a)  logo ((4.7 -- 3.67Ab)2aHo/( tz(1  - hf))). 

Thus, for large values of a,  denoting rapid erosion and 
steep taper,  the maximum stable length is smaller (imbri- 
cation occurs nearer the leading edge) than for smaller 
values of a. That is, rapid erosion tends to reduce the 
strength of the thrust sheet faster than reducing the fault 
zone resistance. The effect of subsidence (isostatic com- 
pensation) is to reduce the value of a; thus, rapid 
subsidence under tectonic loading would tend to 
increase the maximum stable length of the thrust toe. 

Another  important aspect of this treatment is the 
separation of the effects of pore fluid pressures within 
the body of the thrust sheet and within the fault zone at 
the base. These two factors have contrary effects on the 
mechanical stability of the thrust sheet: as pore fluid 
pressure within the fault zone increases (hf increases), 
the fault zone resistance decreases and the maximum 
stable length increases, as predicted by Hubber t  & 
Rubey (1959). However ,  as the pore fluid pressure 
within the body of the thrust sheet increases (hb 
increases) the strength of the thrust sheet is reduced and 
the maximum stable length decreases (eqn. 25). The 
relative importance of hf and hh are illustrated in Fig. 3, 
showing the maximum stable length of a hypothetical 
erosional thrust toe as a function of Af and h b, calculated 
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Fig. 3. Maximum stable length of a thrust toe as a function of pore 
pressure-to-overburden ratio in the fault zone (Af) and within the 
thrust sheet (Ah). Rate of thrust advance 5 km Ma- L, maximum rate of 

erosion 0.7 mm a -~ . 

for a "typical' (arbitrary) profile parameter  a and initial 
thickness H0. 

In this section it has been shown how erosion of the 
upper plate modifies the mechanics of transport of the 
toe of an erosional thrust, including stress levels and 
orientations and maximum tectonic overlap prior to 
internal imbrication. In the next section, the relation- 
ships developed here are applied to the Keystone-  
Muddy Mountain thrust system of southern Nevada, 
and the results compared with those of a previous 
analysis by Price & Johnson (1982). 

APPLICATION TO THE KEYSTONE-MUDDY 
MOUNTAIN THRUST SYSTEM 

The Keystone-Muddy Mountain thrust system of 
southern Nevada and southeastern California is one of 
the ' type' erosional thrusts of the North American Cor- 
dillera (e.g. Longwell 1949, 1960, Burchfiel et al. 1974, 
Burchfiel & Davis 1971, Brock & Engelder 1977, Carr 
1980, Burchfiel et al. 1981, Price & Johnson 1982). The 
Keystone-Muddy Mountain thrust system represents 
the frontal foreland thrust of the Sevier (Late Cretace- 
ous) orogenic event. 

Recent structural studies define three broad provinces 
within the Keystone-Muddy Mountain thrust system: 
the Muddy Mountains province, where the Keystone-  
Muddy Mountain thrust forms an erosional toe: the 
central Spring Mountains province, where the Key- 
s tone-Muddy Mountain thrust system either rides at 
depth or is ramping to the surface; and the southern 
Spring Mountains province, where the Keystone-  
Muddy Mountain thrust system again forms an erosional 
toe (Burchfiel etal .  1974, Willemin etal .  1981, Bohannon 
1981). Data from all three provinces are used in this 
example. 
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Information from the Muddy Mountains can be used 
to determine the profile paramete r  a for the toe of the 
Keys tone-Muddy  Mountains system. Recent  mapping 
by Bohannon (1981) shows an upper  plate thickness of at 
least 1800 meters  is presently preserved in the eastern 
part  of the Muddy Mountains. This thickness represents 
an absolute minimum, because the upper  plate rocks 
were exposed to erosion for an extended period between 
the cessation of thrusting in the late Cretaceous (Fleck 
1970) and final burial by Miocene sediments (Bohannon 
1981). Considering this period of erosion, I will assume 
that at the cessation of thrusting the upper  plate in the 
eastern Muddy Mountains was not less than 2 km thick. 
Palinspastic restoration of Tert iary deformation indi- 
cates that this thickness occurs at least 20 km from the 
top of the ramp (Bohannon 1981). 

In the central province, the Keystone thrust sheet is 
between 4 and 5 km thick as it ramps to the surface 
(Burchfiel et al. 1974). I assume that the Keys tone-  
Muddy Mountain thrust sheet was about  4 km thick at 
the top of the ramp.  Thus,  f rom an initial thickness of  
4 km, the Keys tone-Muddy  Mountain thrust sheet had 
been eroded to a thickness of 2 km after advancing 
20 kin. The profile pa ramete r  ot is given by the relation 

ot = - ( l / x )  log~ (h(x) /Ho)  

or, for the Keys tone-Muddy  Mountain thrust, 

a = - (1 /20 ) log ,  (2/4) 
= 0.0347 k m -  t. 

It is now possible to estimate the maximum stable 
length of the toe of the Keys tone-Muddy  Mountain 
thrust system using eqn (23). Assuming values of 
tz = 0.6 and Ab = 0.4 (hydrostatic equilibrium), the 
values for H0 and a above provide an expression for the 
maximum stable length of the Keys tone-Muddy  Moun- 
tain thrust toe as a function of Af: 

Xmax = 28.9 Ioge (1.49/(1 -- hf)). 

Values of Xmax for various choices of Af and Ab are given 
in Table 1. Price & Johnson (1982) suggest a value ofhf  
between 0.6 and 0.8; these estimates yield a maximum 
stable length between 38 and 58 km. 

A check of this prediction can be made by estimating 
the maximum stable length of the toe from field observa- 
tions. In the central Spring Mountains province the 
Keys tone-Muddy Mountain thrust sheet shows little 
imbrication and internal deformation as it ramps to the 
surface (Burchfiel et al. 1974). Mapping by Bohannon 
(1981) in the Muddy Mountains province shows a series 
of imbricate slices within the toe. This suggests that 
failure occurred within the toe, resulting in imbrication. 
Thus the total displacement on the Keys tone-Muddy 
Mountain thrust exceeded the maximum stable length of 
the toe. 

Mismatch of upper  and lower plate features on the 
Keys tone-Muddy Mountain thrust suggest a minimum 
total displacement of 40 to 50 km (Burchfiel et al. 1981, 
1982, Willemin et al. 1981). If the internal deformation 
in the toe requires that the total displacement signifi- 

Tab le  1. M a x i m u m  stable  length  for the toe of the K e v s t o n e - M u d d v  
M o u n t a i n  thrus t  svs tem 

Af 
hb 0.4 0.5 0.6 0.7 0.8 0.9 

0.4 26.3 31.5 38.0 46.0 58,0 78.0 
0.5 22.8 28.0 34.5 42.8 54.5 74.5 
0.6 (18.9) 24.1 30.6 38.9 50.5 70.5 
0.7 (14.3)  (19.6) 26.0 34.3 46.0 66.0 

Xmax (km) 

cantly exceeds the maximum stable length of the toe, 
then the maximum stable length must be less than 
40-50 km. This in turn suggests that the average pore 
fluid pressures within the fault zone were somewhat  less 
than suggested by Price & Johnson (1982). It is of 
interest to note that of the imbricate faults mapped  by 
Bohannon (1981), none are observed to splay off of the 
basal thrust within the 20 km length exposed, in agree- 
ment  with the calculations here. 

In addition to predicting the maximum stable length, 
the profile paramete r  a may be used to obtain a first- 
order  estimate of the rate of thrust advance by assuming 
an erosional rate constant. In a global study of large 
mid-latitude drainage basins, Ahner t  (1970) inferred an 
erosional rate constant k = 0.1545 Ma- l ;  this would 
correspond to a maximum rate of denudation of 
0.6 m m  a -1 at the top of the ramp for the Keys tone-  
Muddy Mountain system. Johnson (1981) assumed a 
constant rate of erosion of 1 mm a-  i; this would corre- 
spond to an erosional rate constant k = 0.25 Ma -1. 
Assuming a rigid crust, the rate of thrust advance is 
simply k /a ;  thus using Ahner t ' s  estimate for k, the 
average rate of thrust advance for the Keys tone-Muddy  
Mountain system is 

r = 0.1545 Ma-I/0.0347 km -I = 4.5 km Ma -1 

while using Johnson 's  estimate,  

r = 0.25 Ma-t/0.0347 km -1 = 7.7 km Ma -t.  

If  complete and instantaneous isostatic compensat ion 
occurred during thrusting, the average rate of thrust 
advance would be given by (eqn. 7) 

r = (1 - pt/Pm)k/ot. (26) 

Assuming Pt = 2.5 and Pm = 3.3 gm c m  - 3 ,  the est imated 
rates of thrust advance become r =1.1 km Ma -I for 
Ahner t ' s  erosion rate constant and r = 1.7 km Ma -I 
using Johnson's  rate constant. 

The rates calculated assuming a rigid crust are within 
the range allowed by available age controls (Fleck 1970, 
Burchfiel & Davis 1971, 1977, Carr 1980), while the 
rates calculated assuming complete isostatic compensa-  
tion appear  to be somewhat  too slow. This result suggests 
that either erosion was more rapid than estimated here 
(by roughly a factor of 4) or that isostatic compensat ion 
did not occur on the time scale of thrust emplacement .  
The latter possibility is supported by the lack of foredeep 
sediments preserved in the Keys tone-Muddy Mountain 
foreland (e.g. Longwell et al. 1965). 
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C O N C L U S I O N S  

P r o c e e d i n g  f r o m  a n  a s s u m p t i o n  t h a t  t h e  r a t e  o f  e r o -  

s i on  is p r o p o r t i o n a l  to  r e l i e f ,  it h a s  b e e n  s h o w n  h o w  

r a p i d  e r o s i o n  o r  a r ig id  c r u s t  r e d u c e s  t h e  m e c h a n i c a l  

s t a b i l i t y  of  a n  a d v a n c i n g  e r o s i o n a l  t h r u s t ,  w h i l e  r e l a -  

t i ve ly  s l ow  e r o s i o n  o r  r a p i d  i s o s t a t i c  c o m p e n s a t i o n  t e n d s  

to  i n c r e a s e  t h e  m e c h a n i c a l  s t a b i l i t y  o f  a n  e r o s i o n a l  

t h r u s t .  In  e f f e c t ,  t h i s  m e a n s  t h a t  e r o s i o n a l  d e n u d a t i o n  

t e n d s  to  r e d u c e  t h e  s t r e n g t h  o f  a n  a d v a n c i n g  t h r u s t  t o e  

f a s t e r  t h a n  r e d u c i n g  f a u l t  z o n e  r e s i s t a n c e .  C a l c u l a t i o n  o f  

t h e  s t r e s s  f ie ld  n e a r  t h e  b a s e  o f  t h e  t h r u s t  s h e e t  s h o w s  

t h a t  t h e  r a t i o  o f  p r i n c i p a l  s t r e s s e s  a t t a i n s  a m a x i m u m  a n d  

t h e  i n c l i n a t i o n  o f  p r i n c i p a l  s t r e s s e s  a t t a i n s  a m i n i m u m  at  

a c o n s t a n t  d i s t a n c e  f r o m  t h e  l e a d i n g  e d g e  o f  t h e  a d v a n c -  

ing  t h r u s t  s h e e t :  x = xt - (Iog~ 2 ) / a ;  t h i s  p o i n t  h a s  b e e n  

u s e d  to  c a l c u l a t e  t h e  m a x i m u m  s t a b l e  l e n g t h  o f  a n  

e r o s i o n a l  t h r u s t  t oe .  

A p p l i c a t i o n  o f  t h e  t h e o r y  d e v e l o p e d  h e r e  to  t h e  

K e y s t o n e - M u d d y  M o u n t a i n  t h r u s t  s y s t e m  o f  s o u t h e r n  

N e v a d a  y i e ld s  r e s u l t s  e n t i r e l y  c o m p a t i b l e  w i t h  o b s e r v a -  

t i o n :  i m b r i c a t i o n  b e g a n  n e a r  t h e  t o p  o f  t h e  r a m p  as t o t a l  

d i s p l a c e m e n t  b e g a n  to  e x c e e d  t h e  m a x i m u m  s t a b l e  

l e n g t h  o f  t h e  t o e ,  w h i c h  w a s  a r o u n d  2 5 - 3 0  k m .  P r o b a b l e  

r a t e s  o f  t h r u s t  a d v a n c e ,  o b t a i n e d  f r o m  t h e  p ro f i l e  

p a r a m e t e r  a n d  e s t i m a t e s  o f  e r o s i o n  r a t e  c o n s t a n t s ,  lie 

b e t w e e n  4 a n d  8 k m  M a  -~ . T h e  a v e r a g e  h o r i z o n t a l  s t r e s s  

a t  t h e  t o p  o f  t h e  r a m p  ju s t  b e f o r e  i m b r i c a t i o n  w a s  

p r o b a b l y  o n  t h e  o r d e r  o f  200  M P a ,  a s s u m i n g  h y d r o s t a t i c  

p o r e  f lu id  p r e s s u r e s .  

A l t h o u g h  th i s  d e v e l o p m e n t  h a s  b e e n  r e s t r i c t e d  to  a 

s m a l l  s e g m e n t  o f  a t h r u s t  b e l t ,  it i l l u s t r a t e s  a g a i n  t h e  

i m p o r t a n c e  of  e r o s i o n  a n d  t o p o g r a p h y  in m o d i f y i n g  t h e  

s t r e s s  f ie ld  d u r i n g  t h r u s t i n g  ( E l l i o t t  1976)  a n d  a l so  i l lus-  

t r a t e s  t h e  p o s s i b l e  s i g n i f i c a n c e  o f  n o n - l i n e a r  t o p o g r a p h i c  

p r o f i l e s  o n  t h e  s t r e s s  f ield.  
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APPENDIX 

Derivation of  point o f  maximum principal stress ratio. (1) Point of 
minimum principal stress inclination 0: 

From equation (17), 0 = 1/2 arc tan (2r/or h - cry). Substituting for r 
from (10) and factoring o'v, 

0 = 1/2 arc tan (2p,(1 - af)/(o'h/o'v) - 1). (A 1 ) 

From calculus, 

d 1 du 
~x (arc tan (u)) 1 + u 2 dx 

Therefore, d0/dx = 0 if d/dx(20.(1 - Af)/(O-h/O'v) -- 1) = 0. From (14), 

20.(1 - Xf) 
(O'hO'~) -- 1 

20.(1 -- Af) 
= (A2) 

(2g/arid)(1 - At) exp (o~x)(1 - exp ( -~ (& - x))) - 1 
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Differentiat ing the right hand  side with respect  to x, (A2) becomes  

- ( (2p . (1  - a 0 ) z / n 0 ) ( e x p  (ax)  - 2 exp ( - a ( x t  - 2x))) 

( (2~otHo)(1 - At) exp (ax)(1 - exp ( -or(x ,  - x)))  - 1) 2. (A3) 

The  express ion (A3) vanishes when  

exp (otx) - 2 exp ( -o t (x t  - 2x)) = 0 

o r  

x = xt - (log~ 2)lot. 

(2) Point  of m a x i m u m  principal stress ratio. 

Let  A = trh/0.v. Then  f rom equa t ions  (17), 

o-...L = (A + 1) + (A - 1) cos 20 

0" 3 (A + 1) + ( A -  1) c o s 2 0  
(A4) 

l f A '  and 0' represent  the derivatives of A and 0with  respect to x. then 
both  A '  and 0' vanish when  x = x, - (log~ 2)/c~. Differentiat ing (A4) 
with respect to x. 

d o-~ 

dx o- 3 

= (( (A + 1 ) - (A - 1 ) cos 20)(A'  + A '  cos 20 - ((A - I ) sin 20)0')  ] 

/ ~  T i5 -T 2  - i i ~  / 

_ [ ( ( A +  1 ) + ( A -  l ) c o s  2 0 ) ( A ' - A '  cos 2 0 + ( ( A -  1) sin 20)0')] 

k ((A + ]-~ -~(-A" -~  1) cos 20)'- ] 

(A5) 

Because A'  and O' equal 0 at the same point  x. the numera to r  on the 
right hand side of (A5) becomes  0 when  x = x, - (Iog~ 2)/c~. Simple 
numerical  calculations show that the principal stress ratio is a 
max imu m rather  than a min imum at this point.  Q E D .  


